

2nd Prof. P J Paul Memorial Combustion Researchers Meet 24-25 Jan. 2015, Chennai

A Study on Critical Assessment of TEG (Thermo Electric Generator) Efficiencies & a Possible Application

S Ganeshpavan, Y Srinath, CSB Dixit, HS Mukunda

Centre for Disaster Mitigation Jain University, Jakkasandra 562 112

Thermo Electric Power Generation

- TEG converts thermal energy to electrical energy
- Temperature difference between two dissimilar electrical conductors or semiconductors produces a voltage difference
- TEGs can be used for power production possible in remote areas

TEG Efficiency = -	Output electric power		
	Thermal power Input		

Thermoelectric materials

Material	Hot Face T ^o C	η %	\$ /unit
Bi ₂ Te ₃	320	4-5	30-60
Snsb	240	5	25
Hybrid BiTe - PbTe	360	7	98
Calcium Manganese oxide(CMO)	800	7-8	300
CMO cascade with BiTe	600	6	350

Bismuth Telluride is widely available device in market

This study examines the performance of Bi-Te based devices

Make	thk mm	Size mm	Flux W/cm ²	O/P W	AC res Ω	I/P W	η %	\$
TEG power,	4.3	30x30	13.2	5.2	2.7-3.6	115	4.5	20
&	5.1	40x40	9.2	5.1	0.8-1.0	113	4.5	36
Customer Electric	6.0	56x56	11.6	7.5	0.5-0.7	152	4.9	52
Canada	8.0	56x56	10.4	13.0	0.7-1.0	325	4.0	62
Hi-Z Tech	5.1	29x29	9.54	2.5		80	4.5	30
USA	6.5	62x62	5.52	9		217	4.5	45
	5.1	62.62	9.54	14		375	4.5	70
	5.1	75x75	9.54	19		536	4.5	109
TEGPro, US	5.0	56x56	12.3	19.3		356	5.4	59
Marlow	3.4	30x34		4.0			5.0	30
China	4.0	40x48		6.2			5.0	45
Wellen	3.6	30x30		1.2				
Tech China	4.8	40x40		1.6				
China	4.5	50x50	ule n ra	2.4		54%		

Rated module η ranges from 4 to 5.4 %

*

• Thicker modules are expensive, with lower I/P flux

Earlier work in this area

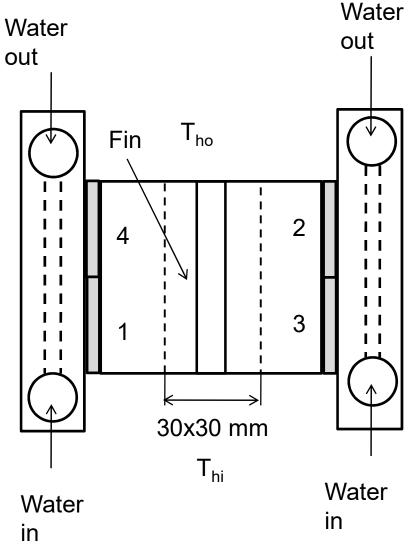
Lab.	Module (Rated η)	No.	O/P W	Flux W/cm²	η %
Risha Mal et al., TEG Integrated Cookstove: a Sustainable Approach of Waste Heat to Energy Conversion <i>Centre</i> <i>for Rural Development and Technology,</i> <i>IIT Delhi</i>	HZ-9 BiTe <i>,</i> (4.5%)	1	4.0	5.5	1.8
C. Lertsatitthanakorn et al , Study of Combined Rice Husk Gasifier TEG, Thermal Processes Research Lab, Thailand		2	3.9	_	2.0
D. Champier et al., TEG power from biomass cook stoves, Paul Valery University, France	TEP1 BiTe, (4.5%)	4	7.0	5.2	1.1
Dan Mastbergen et al, Producing Light from Stoves using a TEG Engines & Energy Conv. Lab CSU, USA	TEP1-1.5 BiTe <i>,</i> (4.5%)	1	3.8	8.3	2.8

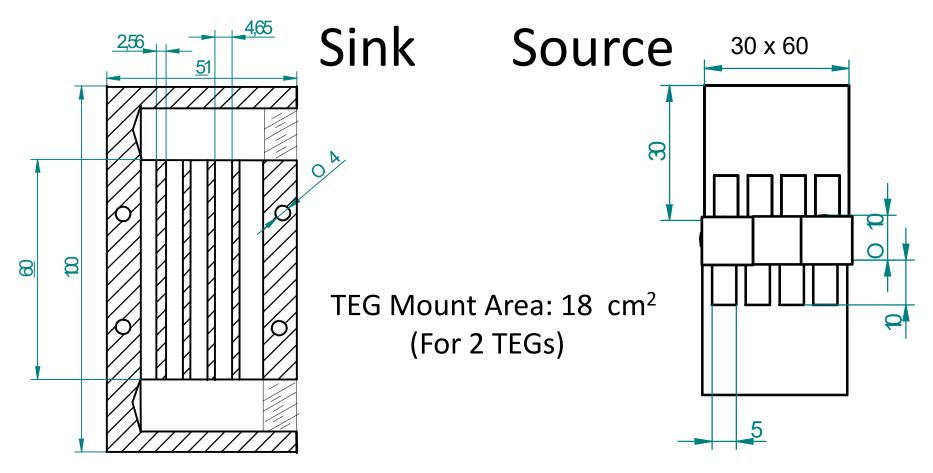
- Max. O/P is about half the rated O/P and so is **ŋ**
- Heat flux is also lower. (Lower flux modules are expensive)

Commercially Available TEG products

Product Name	Mod ules	O/P W	I/P W	η %	Cost \$
TEG12- 24VDC Forced Air cooling	8	20	920	2.1	429
TEG12 -24VDC liquid cooled	12	50	1776	2.8	629
TEG stove top	4	10	460	2.2	205

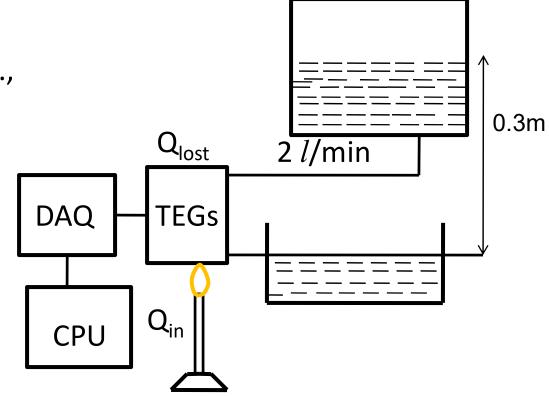
- Based on thermal i/p and rated o/p, claimed η are about half the rated even in these commercially available devices


TEG Efficiencies: The Question


- Rated module η is nearly twice of module η based on claimed device o/p both in research mode & commercially available Thermo Electric power Generators
- Assessment of efficiencies of TEG modules are carried out to understand this large difference
- A 4 TEG device built and tested will be described
- Module used: TECTEG power module Size: 30x30mm, t: 4.3 mm Rated Flux: 13W/cm² ΔT: 270 °C Max. Power: 5.2W, Rated I/P: 115 W 10 nos procured

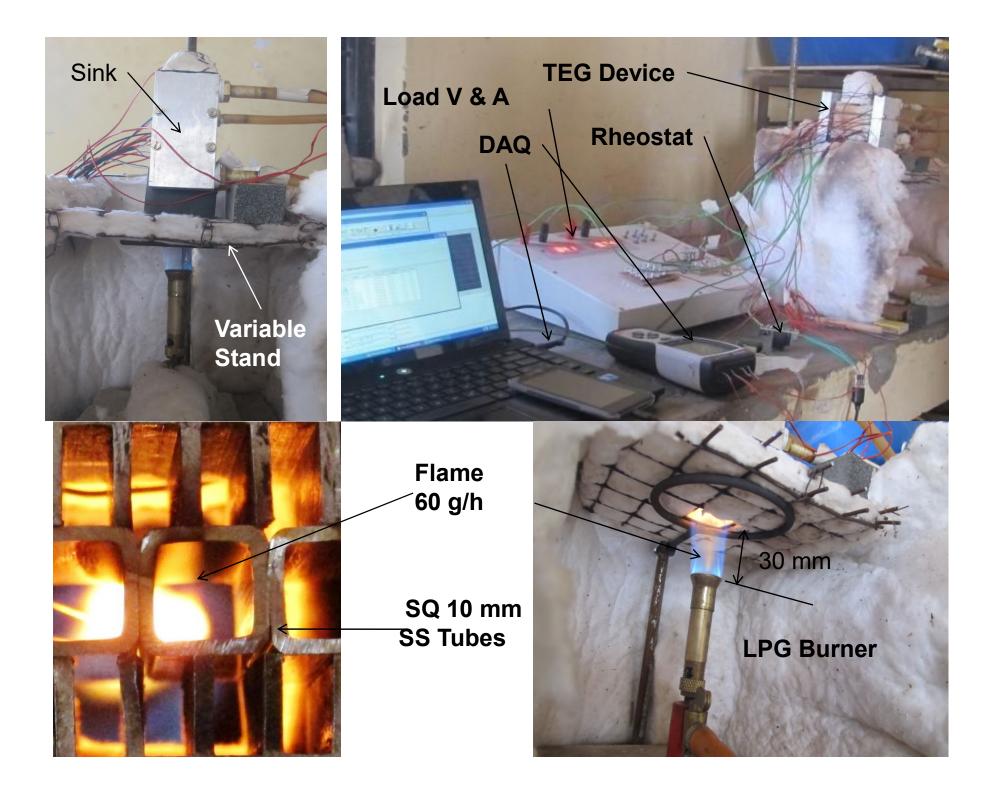
Configuration of device

- 4 module configuration with a heated core and cooled boundaries built
- Required heat input: 460 W Required Flux: 13 W/cm²
- Cooling water flow requirement: ~2.0 / /min, ΔT of about 3 °C
- Max Hot face temperature: 300° C ΔT across TEG: 270 °C
- Two HE with 230 W capacity each (flow rate 1 //min each) used

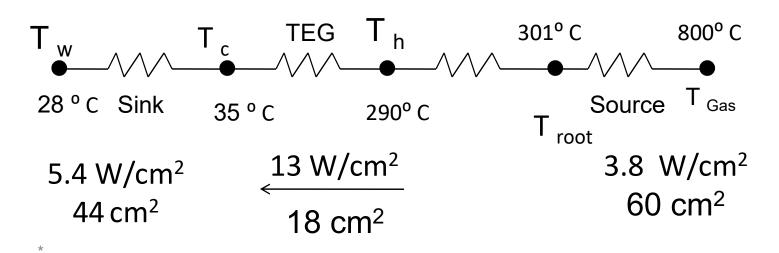

Al body, Water Flow: 1 *l*/min TEG heat flux = 13 W/cm² Water Vel. = 0.2 m/s HE area = 44 cm² Heat Flux to water = 5.4 W/cm² Al Body, Hot Face T: 300 ^o C Fin base T: 311^o C, Gas Avg. T: 750 ^o C HT Coeff: 9 W/m²K Fin surface Heat Flux: 3.8 W/cm²

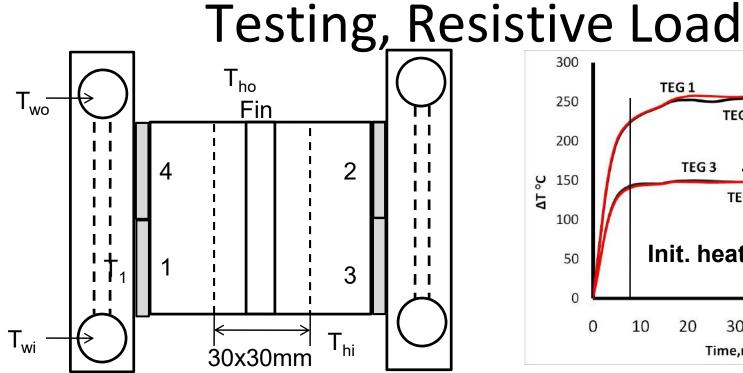
Experimental Setup

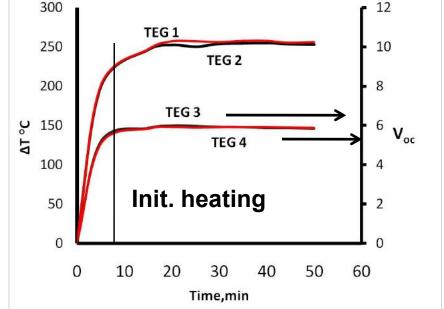
DAQ:


IOTECH Daq 56, 80Hz, 10 Ch., K-- TC & V EQUINOX 4 Ch, , Type-K TC

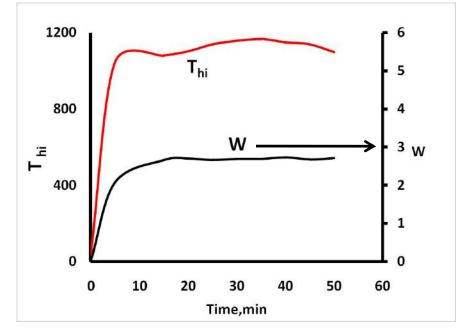
Heat Source: Nom. LPG Flow: 60 g/h (Nozzle: 20 No, 0.83 mm Dia Gas Pr.: 325 mm H₂O

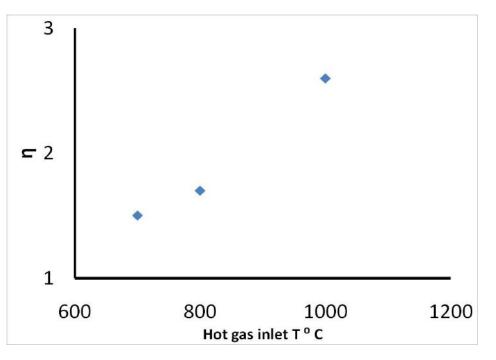

Cooling Water:


50 I tank, Nom. flow: 2 I/min Nom. Head: 0.3 m

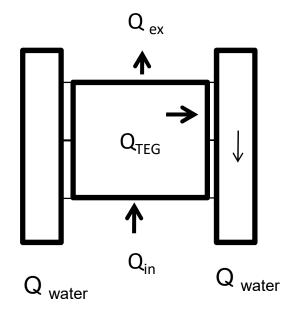


Test Parameters


Heat source	Bunsen burner
Fuel	LPG
Fuel rate	Peak Flow 60 g / h
Thermal contact	Graphite Sheet, Tightening Torque: 0.7 N-m
Data acquired	T Hot gas in and out, T hot and cold face of 4 TEGs, T water in and out, Voc O/P of 4 TEGs, Current of resistor Loaded TEG


- Resistive load testing: const. power o/p of ~2.5 W/mod. within 10 min at 1000 C inlet T
- Low water flow (2 l/min), handled in gravity flow mode
- •Over 50 h of testing completed

Hot gas inlet T Effects


- Highest flux was achieved at hot gas T of about 1000 C by LPG
- To test for suitability for biomass fuel, inlet T was reduced
- Testing at reduced inlet T has indicated fall in efficiency
- Usable o/p obtained at inlet
 Hot gas T of about 700 C

Inlet	TEG	I/P	O/P	η
°C	Flux,	W	W	%
	W/cm ²			
1000	11.3	101	2.7	2.6
800	9.7	87	1.5	1.7
700	8.5	77	1.2	1.5

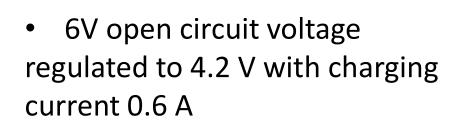
Power balance

g/h	60	30	20
Input, W	804	402	268
Exit hot gas, W	313	151	101
cooling water, W	403	210	140
Unaccounted, W	88	41	27

More than half the i/p flows thro TEG

60 g/h

30 g/h



20 g/h

Testing for Battery Charging

- TEG power best used in storage mode
- Device tested for battery charging
- 1.6 AH Smart phone battery charged with TEG 1 O/P using DC-DC convertor

Conclusions

- Study of TEG literature has indicated large gap in rated module efficiency & achievable efficiency in device form
- Our testing following prescribed mounting techniques also confirms this fact
- Gravity based water cooling is sufficient even for highest flux TEG used
- Use of fins at hot gas end is required to meet high flux demand
- Al material fins (2.5 mm Thick) appears to be adequate & can tolerate peak hot side T of ~320 C
- Hot side configuration needs design modification to accommodate biomass heat source
- The configuration appears to be ideal for combined heat and power generation from biomass

Thank You

*